Tektronix[®]

Spectrum Analyzer

RSA500A Series Portable Spectrum Analyzer Datasheet

The RSA500A Series USB spectrum analyzers offer high performance portable spectrum analysis in a rugged battery-powered package.

Features and benefits

- 9 kHz to 3.0/7.5/13.6/18.0 GHz frequency range covers a broad range of analysis needs
- 40 MHz acquisition bandwidth enables real time analysis for transient capture and vector analysis
- High speed full-span sweeps (70 GHz/sec) for fast setup and discovery
- Standard GPS/GLONASS/Beidou receiver for mapping
- Optional tracking generator for gain/loss, antenna and cable measurements
- DataVu-PC software enables multi-unit recording in variable bandwidths
- Mil-Std 28800 Class 2 environmental, shock and vibration specifications for use in harsh conditions
- Internal battery for extended field operations
- SignalVu-PC software offers real time signal processing with DPX® Spectrum/Spectrogram to minimize time spent on transient and interference hunting
- EMC/EMI pre-compliance and troubleshooting CISPR detectors, predefined standards, limit lines, easy accessory setup, ambient capture, failure analysis, and report generation
- 15 µsec minimum signal duration with 100% probability of intercept ensure you see problems first time, every time

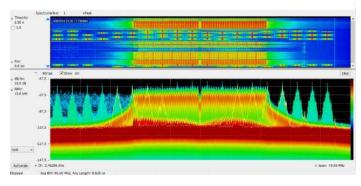
- Application programming interface included for development of custom
- Accessories including tablet PC, calibration kits, adapters and phasestable cables offer a complete field solution for interference hunting and transmitter maintenance

Applications

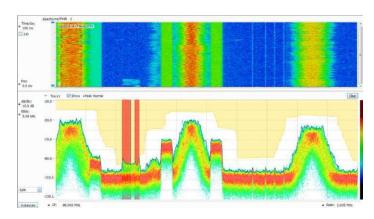
- General purpose spectrum analysis
- Radio network installation and maintenance
- Spectrum monitoring
- Spectrum management
- Interference hunting
- EMI/EMC compliance testing and troubleshooting
- Spectrum operations
- Radiation hazard (RADHAZ) testing
- Emissions control (EMCON) monitoring
- Signal intelligence (SIGINT) monitoring

The RSA500 Series saves you time and helps you succeed

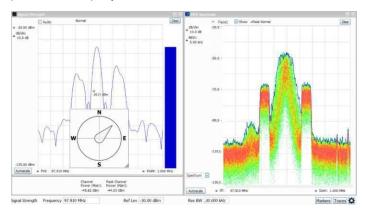
The RSA500 series was built to bring real-time spectrum analysis to solving the problems of spectrum managers, interference hunters and network maintenance personnel who need to track down hard to find interferers, maintain RF networks and keep records of their efforts. The heart of the system is the USB-based RF spectrum analyzer that captures 40 MHz realtime bandwidths with great fidelity in harsh environments. With 70 dB spurious free dynamic range and frequency coverage to 18.0 GHz, all signals of interest can be examined with high confidence in your measurement results. The USB form factor moves the weight of the instrument off of your hands, and replaces it with a lightweight Windows tablet or laptop. Holding a light PC instead of a heavy spectrum analyzer means you can move faster, for longer, and get your work done faster.

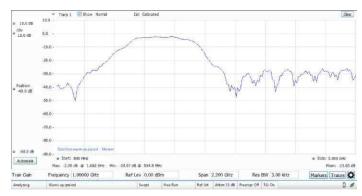

The optional tracking generator enables gain/loss measurements for guick tests of filters, duplexers and other network elements, and you can add cable and antenna measurements of VSWR, return loss, distance to fault and cable loss as needed.

SignalVu-PC software offers rich analysis capability in the field


The RSA500 series operates with SignalVu-PC, a powerful program used as the basis of Tek's traditional spectrum analyzers. SignalVu-PC offers a deep analysis capability previously unavailable in high performance battery-operated solutions. Real-time processing of the DPX® spectrum/ spectrogram is enabled in your PC, further reducing the cost of hardware. Customers who need programmatic access to the instrument can choose either the SignalVu-PC programmatic interface or use the included application programming interface (API) that provides a rich set of commands and measurements directly. Basic functionality of the free SignalVu-PC program is far from basic. Base version measurements are shown below.

The RSA500A combined with SignalVu-PC offers advanced field measurements

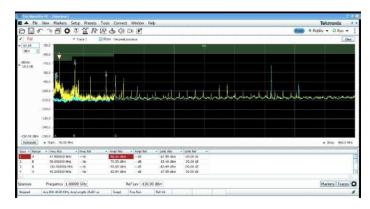

With 40 MHz of real-time bandwidth, the unique DPX® spectrum/ spectrogram shows you every instance of an interfering or unknown signal, even down to 15 μ s in duration. The following image shows a WLAN transmission (green and orange), and the narrow signals that repeat across the screen are a Bluetooth access probe. The spectrogram (upper part of the screen) clearly separates these signals in time to show any signal collisions.


Finding unexpected signals is easy with unattended mask monitoring. A mask can be created on the DPX® spectrum display, and actions taken upon every violation, including stop, save a picture, save acquisition, or send an audible alert. In the illustration below, a mask violation has occurred in red on the mask, and a picture of the screen was saved as a result. Mask testing can be used for unattended monitoring and when playing back recorded signals, enabling testing for different violations on the same signals.

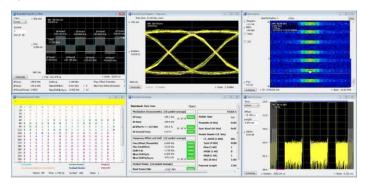
Direction finding and signal strength measurements are quick and easy with the standard SignalVu-PC software. In the illustration below, using the available Alaris smart antenna, a compass continuously monitors antenna direction while the signal strength monitor performs measurements and provide audio indication of signal strength. When combined with the MAP option for SignalVu-PC, signal strength and azimuth are automatically placed on the map of your choice.

The tracking generator (Option 04 on the RSA500) is controlled via SignalVu-PC. A bandpass filter response from 800 MHz to 3 GHz is shown below. Option SV60 adds return loss, cable loss, and distance to fault.

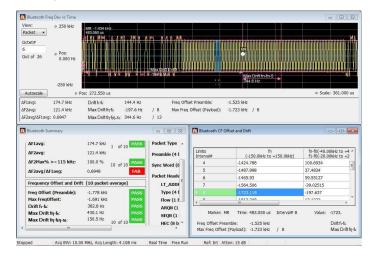
SignalVu-PC application-specific licenses

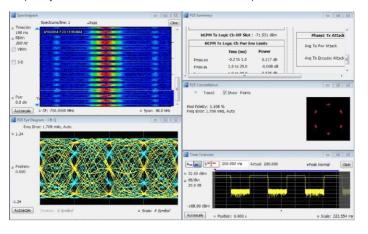

SignalVu-PC offers a wealth of application-oriented options available either installed on the instrument, or as a floating license that can be moved between instruments or attached to your PC. Applications include:

- General-purpose modulation analysis (27 modulation types including 16/32/64/256 QAM, QPSK, O-QPSK, GMSK, FSK, APSK)
- EMC/EMI analysis with CISPR peak, quasi-peak, and average detectors
- Buetooth® analysis of Basic Rate, Low Energy, and Bluetooth 5. Some support of Enhanced Data Rate
- P25 analysis of phase I and phase 2 signals
- WLAN analysis of 802.11a/b/g/j/p, 802.11n, 802.11ac
- LTE[™] FDD and TDD Base Station (eNB) Cell ID and RF measurements
- Mapping
- Pulse analysis
- AM/FM/PM/Direct Audio Measurement including SINAD, THD
- Playback of recorded files, including complete analysis in all domains
- Signal classification and survey


See the separate SignalVu-PC data sheet for complete details and ordering information. Selected applications are illustrated below.

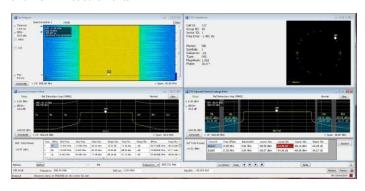
EMC/EMI – EMI pre-compliance and diagnostic measurements are easy with the instrument and SignalVu-PC. Transducer, antenna, preamplifier, and cable gain/loss can be entered and stored in correction files, and the standard spurious measurement feature of SignalVu-PC can be used to establish limit lines for your test. The following illustration shows a test from 30MHz to 960 MHz against the FCC Part 15 Class A limit shown shaded. The blue trace is the capture of Ambient. Violations are recorded in the results table below the graph. CISPR quasi peak and average detectors can be added with option SVQP.


The EMC pre-compliance solution can be added with option EMCVU. It supports many predefined limit lines. It also adds a wizard for easy setup of recommended antennas, LISN, and other EMC accessories with a onebutton push. When using the new EMC-EMI display, you can accelerate the test by applying the time consuming quasi peak only on failures. This display also provides a push-button ambient measurement. The Inspect tool lets you measure frequencies of interest locally, removing the need for scanning.

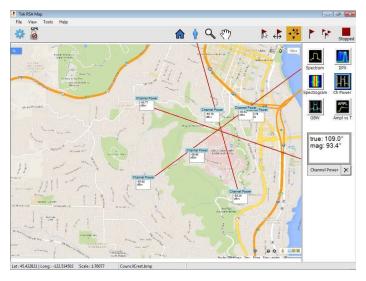

Bluetooth - Two new options have been added to help with Bluetooth SIG standardbase transmitter RF measurements in the time, frequency and modulation domains. Option SV27 supports Basic Rate and Low Energy Transmitter measurements defined by RF.TS.4.2.0 and RF-PHY.TS. 4.2.0 Test Specification. It also demodulates and provides symbol information for Enhanced Data Rate packets. Option SV31 supports Bluetooth 5 standards (LE 1M, LE 2M, LE Coded) and measurements defined in the Core Specification. Both options also decode the physical layer data that is transmitted and color-encode the fields of packet in the Symbol Table for clear identification.

Pass/Fail results are provided with customizable limits. Measurement below shows deviation vs. time, frequency offset and drift and a measurement summary with Pass/Fail results.

APCO 25 – SignalVu-PC application SV26 enables quick, standards-based transmitter health checks on APCO P25 signals. The following image shows a Phase II HCPM signal being monitored for anomalies with the spectrogram while performing transmitter power, modulation and frequency measurements to the TIA-102 standards specification.

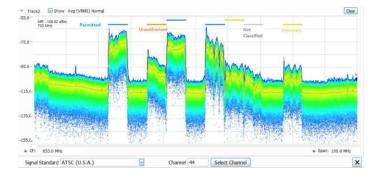

LTE – Application SV28 enables the following LTE base station transmitter measurements:

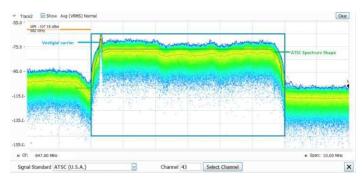
- Cell ID
- Channel power
- Occupied bandwidth
- Adjacent channel leakage ratio (ACLR)
- Spectrum emission mask (SEM)
- Transmitter off power for TDD
- Reference Signal (RS) Power

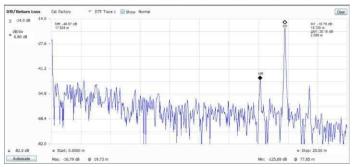

The measurements follow the definition in 3GPP TS Version 12.5 and support all base station categories, including picocells and femtocells. Pass/Fail information is reported and all channel bandwidths are supported.

The Cell ID preset displays the Primary Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS) in a Constellation diagram. It also provides Frequency Error.

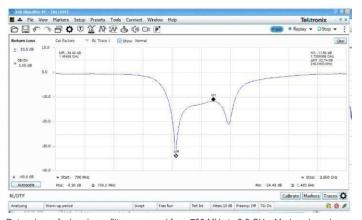
The illustration below shows spectral monitoring with the spectrogram display combined with a Cell ID/Constellation, Spectrum Emission Mask and ACLR measurements.




Mapping – The SignalVu-PC MAP application enables interference hunting and location analysis. Locate interference with an azimuth function that lets you draw a line or an arrow on a mapped measurement to indicate direction, or use the available Alaris smart antenna with automated azimuth placement.


Signal survey/classification — Application SV54 enables expert systems guidance to aid the user in classifying signals. You can quickly create a spectral region of interest, enabling users to identify and sort signals efficiently. The spectral profile mask, when overlaid on top of a trace, provides signal shape guidance while frequency, bandwidth, and channel number are displayed allowing for fast classification. WLAN, GSM, W-CDMA, CDMA, Bluetooth standard and enhanced data rate, LTE FDD and TDD, ATSC and other signals can be quickly and simply identified. Databases can be imported from your H500/RSA2500 signal database library for easy transition to the new software base.

A typical signal survey is show below. The survey is of a portion of the TV broadcast band, and 7 regions have been declared as either Permitted, Unknown, or Unauthorized, as indicated by the color bars for each region. In the detail illustration, a single region has been selected, and since we've declared this to be an ATSC video signal, the spectrum mask for the ATSC signal is shown overlaid in the region. The signal is a close match to the spectrum mask, including the vestigial carrier at the lower side of the signal, characteristic of ATSC broadcasts.



Return loss/VSWR, distance to fault, cable loss - Perform maintenance and troubleshooting tasks with ease. When equipped with the option 04 tracking generator, the RSA500A series with application license SV60xx-SVPC makes one-port measurements on cables, devices and antennas.

Return loss vs distance for a cable with an inserted barrel and an extension cable. The point at M2 (17.638 m, MR) is the barrel connector and the point marked by M1 at 19.725 m is the end of the cable.



Return loss of a bandpass filter measured from 700 MHz to 2.6 GHz. Markers have been placed a 1.48 GHz (-34.4 dB return loss) and at 1.73 GHz (-11.68 dB return loss), indicating the best and worse match in the passband of the filter.

Playback - Application SV56, Playback of recorded signals, can reduce hours of watching and waiting for a spectral violation to minutes at your desk reviewing recorded data.

Recording length is limited only by storage media size, and recording is a basic feature included in SignalVu-PC. SignalVu-PC application SV56 (Playback) allows for complete analysis by all SignalVu-PC measurements, including DPX Spectrogram. Minimum signal duration specifications are maintained during playback. AM/FM audio demodulation can be performed. Variable span, resolution bandwidth, analysis length, and bandwidth are all available. Frequency mask testing can be performed on recorded signals, with actions on mask violation including beep, stop, save trace, save picture, and save data. Portions of the playback can be selected and looped for repeat examination of signals of interest. Playback can be skipfree, or time gaps can be inserted to reduce review time.

Clock time of the recording is displayed in the spectrogram markers for correlation to real world events. In the illustration below, the FM band is being replayed, with a mask applied to detect spectral violations, simultaneous with listening to the FM signal at the center frequency of 92.3 MHz.

DataVu-PC for multi-instrument recording and analysis of large recordings

DataVu-PC software can control two spectrum analyzers simultaneously with independent settings. This allows you to monitor a wide span, while recording at up to 40 MHz bandwidth at any frequency in the range of the instrument. Once recorded, DataVu-PC can find and mark signals of interest based on amplitude and frequency-mask characteristics. eliminating the need for manual inspection of long recordings. Pulse measurements are available on up to 2,000,000 pulses.

Instrument controller for USB spectrum analyzers

For field operations, a complete solution requires a Windows Tablet or laptop for instrument operation, record keeping and communication. Tektronix recommends the Panasonic FZ-G1 tablet computer for controlling the RSA500 series and as a standalone unit.

The Panasonic FZ-G1 tablet computer is sold separately and is available for purchase from Panasonic at https://na.panasonic.com/us/computers-tablets-handhelds/tablets/tablets/toughpad-fz-g1 and a variety of third party vendors. Tektronix recommends the FZ-G1 over other tablets because of its performance, portability, and ruggedized form-factor and it has been tested to work with all USB RSA products.

Key specifications, instrument controller

- Windows 10 Pro 64-bit operating system
- Intel(R) CoreTM i5-6300U vProTM 2.4-3.0 GHz Processor
- 8GB RAM
- 256 GB Solid State Drive
- 10.1" (25.6 cm) Daylight-readable screen
- 10-point Multi Touch+ Digitizer screen plus included pen interface
- USB 3.0 + HDMI Ports, 2nd USB Port
- Wi-Fi, Bluetooth® and 4G LTE Multi Carrier Mobile Broadband with Satellite GPS
- MIL-STD-810G certified (4' drop, shock, vibration, rain, dust, sand, altitude, freeze/thaw, high/low temperature, temperature shock, humidity, explosive atmosphere)
- IP65 certified sealed all-weather design
- Integrated microphone
- · Integrated speaker
- On-screen and button volume and mute controls

- Integrated battery backup for hot-swap of battery packs
- 3-year Warranty with Business Class Support (provided by Panasonic in your region)

Smart antenna for interference hunting

Tektronix offers the Alaris DFA-0047 ¹ smart antenna with built-in USB compass for direction finding and interference hunting applications. Full details on the antenna are available in the Alaris data sheet available on Tek.com by searching on Alaris. A summary of features and specifications is shown below.

- Frequency Range: 20 MHz 8.5 GHz
 - 9 kHz-20 MHz extension available(0.3m loop antenna), order DF-A0047-01
- Trigger control for one-hand operation with functions for:
 - o Preamp on/off
 - o Band switch
 - Push to measure with SignalVu-PC with MAP option
- Standard armrest extension for ease in long interference hunting sessions
- Transit case available

Alaris direction-finding smart antenna.

¹ Alaris antenna is available in limited geographies. See ordering information for details.

Calibration kits, phase-stabilized cables, adapters, antennas and other accessories

Tektronix offers a variety of accessories to simplify your shopping for the complete solution for field test. See the ordering information section for further details.

Phase-stabilized cables from Tekronix for cable and antenna measurements

Antennas for interference hunting

The RSA56RACK holds one RSA500A for rackmount applications

The soft case PN 016-2109-01 is standard with every RSA500A and has room for the unit, a tablet PC and accessories

The RSA500TRANSIT case has room for the instrument in its soft case, a tablet PC, power supply and accessories.

Datasheet

Specifications

All specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.

Frequency

Frequency range

RSA503A 9 kHz to 3 GHz RSA507A 9 kHz to 7.5 GHz RSA513A 9 kHz to 13.6 GHz RSA518A 9 kHz to 18.0 GHz

Frequency marker readout

accuracy

 \pm (RE × MF + 0.001 × Span) Hz

RE: Reference Frequency Error

MF: Marker Frequency [Hz]

Reference frequency accuracy

Initial accuracy at Cal (30 min

warm-up)

±1 x 10⁻⁶

First year aging, typical Cumulative error (Initial ±1 x 10⁻⁶ (1 year) 3 x 10⁻⁶ (1 year)

accuracy + temperature +

aging), typical Temperature drift

 $\pm 0.9 \times 10^{-6} (-10 \text{ to } 60 \text{ °C})$

External reference input

BNC connector, 50 Ω nominal

External reference input

Every 1 MHz from 1 to 20 MHz plus the following: 1.2288 MHz, 2.048 MHz, 2.4576 MHz, 4.8 MHz, 4.9152 MHz, 9.8304 MHz, 13 MHz, and 19.6608 MHz.

frequency

The spurious level on the input signal must be less than -80 dBc within 100 kHz offset to avoid on-screen spurious.

External reference input range ± 5 ppm

External reference input level

-10 to +10 dBm

GNSS

Accuracy, when locked to

±0.025 ppm³

GNSS²

GNSS Trained Accuracy, when ±0.025 ppm⁶

GNSS antenna is disconnected 4, 5

 $\pm 0.08 \text{ ppm}^{7}$

RF input

RF input

RF Input Impedance 50 Ω

RF VSWR (RF Attn = 20 dB),

typical

< 1.2 (10 MHz to 3 GHz)

< 1.5 (>3 GHz to 7.5 GHz) <1.9 (>7.5 GHz to 18 GHz)

RF VSWR preamp ON, typical

< 1.5 (10 MHz to 6 GHz, RF ATT=10 dB, preamp on)

< 1.7 (> 6 GHz to 7.5 GHz, RF ATT=10 dB, preamp on)

<1.9 (>7.5 GHz to 18 GHz, RF ATT = 10 dB, preamp ON)

Maximum RF input level

Maximum DC voltage

±40 V (RF input)

Maximum safe input power

+33 dBm (RF input, 10 MHz to 18.0 GHz, RF Attn ≥ 20 dB)

+13 dBm (RF input, 9 kHz to 10 MHz, RF Attn ≥ 20 dB)

+20 dBm (RF input, RF Attn < 20 dB)

Maximum safe input power

(Preamp On)

+33 dBm (RF input, 10 MHz to 18.0 GHz, RF Attn ≥ 20 dB)

+13 dBm (RF input, 9 kHz to 10 MHz, RF Attn ≥ 20 dB)

+20 dBm (RF input, RF Attn < 20 dB)

Maximum measurable input

power

+30 dBm (RF input, ≥10 MHz to Fmax, RF ATT Auto)

+20 dBm (RF input, <10 MHz, RF ATT Auto)

Input RF attenuator 0 dB to 51 dB (1 dB step)

Tested using GPS system.

For use to a stability of ±0.025ppm, the unit should be powered on continuously for 2 to 5 days after initial unpacking.

Tested using GPS system.

For 24 hours continuous operation within temperature limits (see footnotes 5 and 6) after GNSS training. Refer to cumulative error specification if operating in GNSS trained mode beyond 24 hours since last training.

For less than 3 °C ambient temperature change after training.

For less than 10 °C ambient temperature change after training.

Sweep speed

Full span sweep speed, typical 70 GHz/sec (RBW = 1 MHz)

mean 8

60 GHz/sec (RBW = 100 kHz) 15.7 GHz/sec (RBW = 10 kHz)

1.7 GHz/sec (RBW = 1 kHz)

Tuning step time via API ≤1 ms

Amplitude and RF

Amplitude and RF flatness

Reference level setting range

-170 dBm to +40 dBm, 0.1 dB step, (Standard RF input)

Frequency response at 18 ℃ to 28 ℃ (At 10 dB RF **Attenuator Setting)**

Amplitude accuracy at all center frequencies

Center frequency range	18 °C to 28 °C
9 kHz ≤ 3.0 GHz	±0.8 dB
> 3 to 7.5 GHz (RSA507A)	±1.5 dB
>7.5 GHz to 13.6 GHz (RSA513A/RSA518A)	±1.55 dB
>13.6 GHz to 18.0 GHz (RSA518A)	±1.55 dB

Amplitude Accuracy at All Center Frequencies - Preamp ON (18 ℃ to 28 ℃, 10 dB RF Attenuator)

Center frequency range	18 °C to 28 °C
200 kHz to ≤3.0 GHz	±1.0 dB
> 3 GHz to 7.5 GHz	±1.75 dB
>7.5 GHz to 13.6 GHz	±2.0 dB
>13.6 GHz to 18.0 GHz	±2.0 dB

Preamp gain

27 dB at 2 GHz

21 dB at 6 GHz (RSA507A) 25 dB at 10 GHz (RSA513A) 25 dB at 15 GHz (RSA518A)

Channel response (amplitude and phase deviation), typical

For these specifications, use a flat top window for maximum CW amplitude verification accuracy with the RF attenuator setting at 10 dB.

Characteristic		Description		
Measurement center frequency	Span	Amplitude flatness, typical	Amplitude flatness, RMS, typical	Phase linearity, RMS, typical
9 kHz to 40 MHz	≤40 MHz ⁹	±1.0 dB	0.60 dB	
>40 MHz to 4.0 GHz	≤20 MHz	±0.10 dB	0.08 dB	0.3°
>4 GHz to 7.5 GHz	≤20 MHz	±0.35 dB	0.20 dB	0.7°
>7.5 GHz to 13.6 GHz	≤20 MHz	±0.35 dB	0.20 dB	0.7°
>13.6 GHz to 18.0 GHz	≤20 MHz	±0.35 dB	0.20 dB	0.7°
>40 MHz to 4 GHz	≤40 MHz	±0.35 dB	0.14 dB	0.8°
>4 GHz to 7.5 GHz	≤40 MHz	±0.40 dB	0.20 dB	1.0°
>7.5 GHz to 13.6 GHz	≤40 MHz	±0.60 dB	0.40 dB	1.5°
>13.6 GHz to 18.0 GHz	≤40 MHz	±0.60 dB	0.40 dB	1.5°

Measured using a Dell Latitude E5540, i7, Windows®7 Pro. Spectrum display is only measurement on screen.

Span extents cannot exceed lower frequency limit of the instrument

Datasheet

Trigger

Trigger/Sync input, typical Voltage range: TTL, 0.0 V to 5.0 V

Trigger level (Schmitt trigger):

Positive-going threshold voltage: 1.6 V min, 2.1 V max Negative-going threshold voltage: 1.0 V min., 1.35 V max Impedance: 10 k ohms with schottky clamps to 0 V, +3.4 V

External trigger timing uncertainty >20

>20 MHz to 40 MHz acquisition bandwidth: ±250 ns

Uncertainty increases as acquisition bandwidth is decreased.

Power trigger

Power trigger, typical Range: 0 dB to -50 dB from reference level, for trigger levels > 30 dB above the noise floor.

Type: Rising or falling edge

Trigger re-arm time: ≤ 100 µsec

Power trigger position timing uncertainty

>20 MHz to 40 MHz acquisition bandwidth: ±250 ns

Uncertainty increases as acquisition bandwidth is decreased.

Power trigger level accuracy ±1.5 dB for CW signal at tuned center frequency for trigger levels > 30 dB above the noise floor.

This specification is in addition to the overall amplitude accuracy uncertainty for SA mode.

Noise and distortion

3rd Order IM intercept (TOI) +14 dBm at 2.130 GHz

3rd Order IM intercept (TOI),

Preamp off, typical +17 dBm (9 kHz to 25 MHz)

+15 dBm (25 MHz to 3 GHz)

+15 dBm (3 GHz to 4 GHz, RSA507A) +10 dBm (4 GHz to 7.5 GHz, RSA507A)

+15 dBm (7.5 GHz to Max CF GHz, RSA513A/RSA518A)

Preamp on, typical -20 dBm (9 kHz to 25 MHz)

-15 dBm (25 MHz to 3 GHz)

-15 dBm (3 GHz to 4 GHz, RSA507A) -20 dBm (4 GHz to 7.5 GHz, RSA507A)

-15 dBm (7.5 GHz to Max CF, RSA513A/RSA518A)

3rd Order Inter-modulation

distortion

-78 dBc at 2.130 GHz

Each signal level -25 dBm at the RF input. 2 MHz tone separation. Attenuator = 0, Reference level = -20 dBm.

Noise and distortion

3rd Order inter-modulation distortion

> Preamp off, typical < -70 dBc (10 kHz to 25 MHz)

> > < -80 dBc (25 MHz to 3 GHz)

< -80 dBc (3 GHz to 4 GHz, RSA507A) < -70 dBc (4 GHz to 7.5 GHz, RSA507A)

< -80 dBc (7.5 GHz to Max CF, RSA513A/RSA518A)

Each signal level -25 dBm at the RF input. 2 MHz tone separation. Attenuator = 0, Reference level = -20 dBm.

< -70 dBc (9 kHz to 25 MHz) Preamp on, typical

< -80 dBc (25 MHz to 3 GHz)

< -80 dBc (3 GHz to 4 GHz, RSA507A) < -70 dBc (4 GHz to 7.5GHz, RSA507A)

< -80 dBc (7.5 GHz to Max CF, RSA513A/RSA518A)

Each signal level -55 dBm at the RF input. 2 MHz tone separation. Attenuator = 0, Reference level = -50 dBm.

2nd Harmonic distortion, typical

2nd Harmonic distortion < -75 dBc (40 MHz to 1.5 GHz)

> < -75 dBc (1.5 GHz to 3.75 GHz, RSA507A) <-75 dBc (3.75 GHz to 6.8 GHz, RSA513A) <-75 dBc (6.8 GHz to 9 GHz, RSA518A)

2nd Harmonic distortion,

Preamp on

< - 60 dBc (40 MHz to 15.9 GHz), input frequency

2nd Harmonic distortion intercept

(SHI)

+35 dBm (40 MHz to 1.5 GHz) +35 dBm (1.5 GHz to 9 GHz)

2nd Harmonic distortion intercept

(SHI), Preamp on

+5 dBm (40 MHz to 15.9 GHz), input frequency

Datasheet

Noise and distortion

Displayed average noise level (DANL)

(Normalized to 1 Hz RBW, with log-average detector)

For the RSA503A and RSA507A:

Frequency range	Preamp on	Preamp on, typical	Preamp off, typical
500 kHz to 1 MHz	-138 dBm/Hz	-145 dBm/Hz	-130 dBm/Hz
1 MHz to 25 MHz	-153 dBm/Hz	-158 dBm/Hz	-130 dBm/Hz
>25 MHz to 1 GHz	-161 dBm/Hz	-164 dBm/Hz	-141 dBm/Hz
>1 GHz to 2 GHz	-159 dBm/Hz	-162 dBm/Hz	-141 dBm/Hz
>2 GHz to 3 GHz	-156 dBm/Hz	-159 dBm/Hz	-138 dBm/Hz
>3 GHz to 4 GHz, RSA507A	-153 dBm/Hz	-156 dBm/Hz	-138 dBm/Hz
>4 GHz to 6 GHz, RSA507A	-159 dBm/Hz	-162 dBm/Hz	-147 dBm/Hz
>6 GHz to 7.5 GHz, RSA507A	-155 dBm/Hz	-158 dBm/Hz	-145 dBm/Hz

For the RSA513A and RSA518A:

Frequency range	Preamp on	Preamp on, typical
500 kHz to 1 MHz	-138 dBm/Hz	-145 dBm/Hz
1 MHz to 25 MHz	-153 dBm/Hz	-158 dBm/Hz
>25 MHz to 1 GHz	-158 dBm/Hz	-161 dBm/Hz
>1 GHz to 2 GHz	-156 dBm/Hz	-159 dBm/Hz
>2 GHz to 2.75 GHz	-153 dBm/Hz	-157 dBm/Hz
>2.75 GHz to 4 GHz	-149 dBm/Hz	-152 dBm/Hz
>4 GHz to 6 GHz	-155 dBm/Hz	-159 dBm/Hz
>6 GHz to 7.5 GHz	-151 dBm/Hz	-155 dBm/Hz
>7.5 GHz to 14 GHz	-161 dBm/Hz	-165 dBm/Hz
>14 GHz to 14.8 GHz	-159 dBm/Hz	-165 dBm/Hz
>14.8 GHz to 15.2 GHz	-157 dBm/Hz	-161 dBm/Hz
>15.2 GHz to 17.65 GHz	-159 dBm/Hz	-165 dBm/Hz
>17.65 GHz to 18.0 GHz	-157 dBm/Hz	-161 dBm/Hz

Phase noise

Phase noise

Offset	10 kHz	100 kHz	1 MHz
1 GHz CF	-94 dBc/Hz	-94 dBc/Hz	-116 dBc/Hz
10 MHz, typical (RSA503A, RSA507A)	-120 dBc/Hz	-124 dBc/Hz	-124 dBc/Hz
1 GHz CF (typical)	-97 dBc/Hz	-98 dBc/Hz	-121 dBc/Hz
2 GHz CF (typical)	-96 dBc/Hz	-97 dBc/Hz	-120 dBc/Hz
6 GHz CF, typical (RSA507A)	-94 dBc/Hz	-96 dBc/Hz	-120 dBc/Hz
10 GHz, typical (RSA513A, RSA518A)	-89 dBc/Hz	-90 dBc/Hz	-113 dBc/Hz
15 GHz, typical (RSA513A, RSA518A)	-86 dBc/Hz	-87 dBc/Hz	-110 dBc/Hz

Spurious response

Residual spurious response (Reference = -30 dBm, RBW = 1 kHz)

<-75 dBm (500 kHz to 60 MHz), typical

< -85 dBm (>60 MHz to 80 MHz), typical

<-100 dBm (>80 MHz to Max CF), typical

(Exceptions: <-90 dBm (13.78 GHz to 13.94 GHz))

Spurious response with Signal (Image suppression)

< -65 dBc (10 kHz to Max CF, Ref= -20 dBm, Atten = 10 dB, RF input Level = -20 dBm, RBW = 10 Hz)

Spurious response with signal at

Offset ≥ 1 MHz

Frequency	Span ≤40 MHz, swept spans	>40 MHz
		Typical
1 MHz - 100 MHz		-75 dBc
100 MHz - 3 GHz	-72 dBc	-75 dBc
3 GHz - 7.5 GHz (RSA507A)	-72 dBc	-75 dBc
7.5 GHz to 13.6 GHz (RSA513A/RSA518A)	-72 dBc	-75 dBc
13.6 GHz to 18.0 GHz (RSA518A)	-72 dBc	-75 dBc

Spurious response with signal at CF

(150 kHz ≤ offset <1 MHz, Span=2 MHz):

Frequency	Typical
1 MHz - 100 MHz	-70 dBc
100 MHz - 3 GHz	-70 dBc
3 GHz - 7.5 GHz (RSA507A)	-70 dBc
7.5 GHz - 13.6 GHz (RSA513A/RSA518A)	-64 dBc
13.6 GHz - 18.0 GHz (RSA518A)	-64 dBc

Spurious response with signal at other than CF, typical

Frequency	Span ≤40 MHz, swept spans >40 MHz
1 MHz – 25 MHz (LF Band)	-73 dBc
25 MHz – 3 GHz	-73 dBc
3 GHz – 7.5 GHz (RSA507A)	-73 dBc
7.5 GHz - 13.6 GHz (RSA513A/RSA518A)	-73 dBc
13.6 GHz - 18.0 GHz (RSA518A)	-73 dBc

Spurious response with signal at half-IF 10

< -75 dBc, (CF: 30 MHz to Max CF, Ref = -20 dBm, Atten = 10 dB, RBW = 10 Hz, Span = 10 kHz)

Signal frequency = 2310 MHz, RF input level = -20 dBm

Local oscillator feed-through to input connector, typical

< -70 dBm, preamp off.

< -90 dBm, preamp on.

Attenuator = 10 dB.

¹⁰ This is an input signal at half of the IF frequency.

Datasheet

Acquisition

 IF bandwidth
 40 MHz.

 A/D converter
 14 bits, 112 Ms/s.

 Real-Time IF Acquisition Data
 112 Ms/s, 16-bit integer samples.

ACLR

ACLR for 3GPP Down Link, 1 DPCH (2130 MHz) -57 dB (Adjacent Channel)

-68 dB w/Noise Correction (Adjacent Channel)

-57 dB (First Alternate Channel)

-69 dB w/Noise Correction (First Adjacent Channel)

ACLR LTE -58 dB (Adjacent Channel)

-61 dB w/Noise Correction (Adjacent Channel)

-61 dB (First Alternate Channel)

-63 dB w/Noise Correction (First Adjacent Channel)

GPS location

Format GPS/GLONASS/BeiDou

GPS antenna power 3 V, 100 mA maximum

Time to first fix, maximum Lock time ranges from 2 sec (hot) to 46 sec (cold start). -130 dBm input signal power.

Horizontal position accuracy GPS: 2.6 m

Glonass: 2.6 m

BeiDou: 10.2 m

GPS + Glonass: 2.6 m

GPS + BeiDou: 2.6 m

Test conditions: 24 hr. static, -130 dBm, full power

Tracking generator (Option 04)

Tracking Generator (Option 04)

Frequency range 10 MHz to 3 GHz (RSA503)

10 MHz to 7.5 GHz (RSA507A/513A/518A)

Sweep speed, typical mean 0.192 sec/sweep, 101 points, 50 kHz RBW, 980 to 1020 MHz sweep (1.9 mS per point)

Measured using a Dell Latitude E5540, i7, Windows®7 Pro. Transmission Gain display is only measurement on screen.

Frequency resolution 100 Hz
TG output connector N type

VSWR < 1.8:1, 10 MHz to 7.5 GHz, -20 dBm output level

Maximum output power -3 dBm,10 MHz to 7.5 GHz
Output power level setting 40 dB, 10 MHz to 7.5 GHz

ange

Output power level step size 1 dB, 10 MHz to 7.5 GHz

Tracking generator (Option 04)

Output power level step size

accuracy

 $\pm 0.5 dB$

Harmonics

< -22 dBc, ≥20 MHz

Non-harmonic spurious

< -30 dBc; spurious < 2 GHz from TG output frequency

< -25 dBc; spurious ≥ 2 GHz from TG output frequency

Reverse power without

damage

40 Vdc, +20 dBm RF

SignalVu-PC standard measurements and performance

Measurements included.

General signal analysis	
Spectrum analyzer	Spans from 1 kHz to 18.0 GHz Three traces plus math and spectrogram trace Five markers with power, relative power, integrated power, power density and dBc/Hz functions
DPX Spectrum/Spectrogram	Real time display of spectrum with 100% probability of intercept of up to 15 µsec signals in up to 40 MHz span
Amplitude, frequency, phase vs. time, RF I and Q vs. time	Basic vector analysis functions
Time Overview/Navigator	Enables easy setting of acquisition and analysis times for deep analysis in multiple domains
Spectrogram	Analyze and re-analyze your signal with a 2-D or 3-D waterfall display
AM/FM listening	Hear, and record to file, FM and AM signals
Analog modulation analysis	
AM, FM, PM analysis	Measures key AM, FM, PM parameters
RF measurements	
Spurious measurement	User-defined limit lines and regions provide automatic spectrum violation testing across the entire range of the instrument. Four traces can be saved and recalled; CISPR Quasi-Peak and Average detectors available with option SVQP.
Spectrum emission mask	User-defined or standards-specific masks
Occupied Bandwidth	Measures 99% power, -xdB down points
Channel Power and ACLR	Variable channel and adjacent/alternate channel parameters
MCPR	Sophisticated, flexible multi-channel power measurements
CCDF	Complementary Cumulative Distribution Function plots the statistical variations in signal level

SignalVu-PC/RSA507A key characteristics

Maximum span 40 MHz real-time

> 9 kHz - 3 GHz swept (RSA503A) 9 kHz - 7.5 GHz swept (RSA507A) 9 kHz - 13.6 GHz swept (RSA513A)

> 9 kHz - 18.0 GHz swept (RSA518A)

Maximum acquisition time 2.0 s

SignalVu-PC standard measurements and performance

Minimum IQ resolution 17.9 ns (acquisition BW = 40 MHz)

Tuning Tables Tables that present frequency selection in the form of standards-based channels are available for the following.

Cellular standards families: AMPS, NADC, NMT-450, PDC, GSM, CDMA, CDMA-2000, 1xEV-DO WCDMA, TD-SCDMA, LTE,

WiMax

Unlicensed short range: 802.11a/b/j/g/p/n/ac, Bluetooth

Cordless phone: DECT, PHS

Broadcast: AM, FM, ATSC, DVBT/H, NTSC

Mobile radio, pagers, other: GMRS/FRS, iDEN, FLEX, P25, PWT, SMR, WiMax

DPX spectrum display

Spectrum processing rate (RBW = auto, trace length 801)

≤10,000 spectrums per second

DPX bitmap resolution

201 pixels vertical x 801 pixels horizontal

DPX Spectrogram minimum

1 ms

time resolution

≤10,000 per second (span independent)

Amplitude, frequency, signal density

Minimum signal duration for

15 µs up to 40 MHz span

100% probability of intercept

(POI), typical

Marker information

Span range (continuous

processing)

1 kHz to 40 MHz

Span range (swept)

Up to maximum frequency range of instrument

Dwell time per step

5 ms to 100 s

Trace processing

Color-graded bitmap, +Peak, -Peak, average

Trace length RBW range

801, 2401, 4001, 10401 1 kHz to 4.99 MHz

DPX spectrogram display

Trace detection +Peak, -Peak, Average(V_{RMS})

Trace length, memory depth 801 (60,000 traces)

2401 (20,000 traces) 4001 (12,000 traces)

Time resolution per line 1 ms to 6400 s, user selectable

Spectrum and Spurious display

Traces Three traces + 1 math trace + 1 trace from spectrogram for Spectrum display; four traces for Spurious display

Trace functions Normal, Average (VRMS), Max Hold, Min Hold, Average of Logs

Detector Average (VRMS), Average (of logs), CISPR peak, +Peak, Sample for Spectrum only -Peak; when Option SVQP is enabled, CISPR

Quasi Peak and Average

Spectrum trace length 801, 2401, 4001, 8001,10401, 16001, 32001, and 64001 points

RBW range 1.18 Hz to 8 MHz for Spectrum display

SignalVu-PC standard measurements and performance

±2%

Analog modulation analysis

(standard)

AM demodulation accuracy,

typical

0 dBm input at center, carrier frequency 1 GHz, 1 kHz/5 kHz input/modulated frequency, 10% to 60% modulation depth

0 dBm input power level, reference level = 10 dBm, Atten=Auto

FM demodulation accuracy,

typical

±1% of span

0 dBm input at center, carrier frequency 1 GHz, 400 Hz/1 kHz input/modulated frequency

0 dBm input power level, reference level = 10 dBm, Atten=Auto

PM demodulation accuracy,

typical

±3% of measurement bandwidth

0 dBm input at center, carrier frequency 1 GHz, 1 kHz/5 kHz input/modulated frequency

0 dBm input power level, reference level = 10 dBm, Atten=Auto

SignalVu-PC applications performance summary

AM/FM/PM and direct audio measurement (SVAxx-SVPC)

Carrier frequency range (for modulation and audio measurements)

(1/2 × audio analysis bandwidth) to maximum input frequency

Maximum audio frequency

span

10 MHz

>0.1)

FM measurements (Mod. index Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, -Peak, Peak/Peak/2, RMS), SINAD, Modulation

Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

Carrier Power, Audio Frequency, Modulation Depth (+Peak, -Peak, Peak-Peak/2, RMS), SINAD, Modulation Distortion, S/N, Total AM measurements

Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

PM measurements

Carrier Power, Carrier Frequency Error, Audio Frequency, Deviation (+Peak, -Peak, Peak/2, RMS), SINAD, Modulation

Distortion, S/N, Total Harmonic Distortion, Total Non-harmonic Distortion, Hum and Noise

Audio filters Low pass, kHz: 0.3, 3, 15, 30, 80, 300, and user-entered up to 0.9 × audio bandwidth

High pass, Hz: 20, 50, 300, 400, and user-entered up to 0.9 × audio bandwidth

Standard: CCITT, C-Message

De-emphasis (µs): 25, 50, 75, 750, and user-entered

File: User-supplied .TXT or .CSV file of amplitude/frequency pairs. Maximum 1000 pairs

Performance characteristics, typical	Conditions: Unless otherwise stated, performance is given for: Modulation rate = 5 kHz AM depth: 50% PM deviation 0.628 Radians			
	FM	AM	PM	Conditions
Carrier Power accuracy	Refer to instrument ampl	itude accuracy		
Carrier Frequency accuracy	± 0.5 Hz + (transmitter frequency × ref. freq. error)	Refer to instrument frequency accuracy	± 0.2 Hz + (transmitter frequency × ref. freq. error)	FM deviation: 5 kHz / 100 kHz
Depth of Modulation accuracy	NA	± 0.2%+(0.01 * measured value)	NA	Rate: 5 kHz Depth: 50%
Deviation accuracy	± (1% × (rate + deviation)+50 Hz)	NA	± 100% * (0.01 + (measured rate/1 MHz))	FM deviation: 100 kHz
Rate accuracy	± 0.2 Hz	± 0.2 Hz	± 0.2 Hz	FM deviation: 5 kHz / 100 kHz
Residual THD	0.10%	0.16%	0.1%	FM Deviation: 5 kHz / 100 kHz Rate: 1 kHz
Residual SINAD	43 dB	56 dB	40 dB	FM deviation 5 kHz FM deviation 100 kHz Rate: 1 kHz

APCO P25 Measurements Application (SV26xx-SVPC)

Measurements

RF output power, operating frequency accuracy, modulation emission spectrum, unwanted emissions spurious, adjacent channel power ratio, frequency deviation, modulation fidelity, frequency error, eye diagram, symbol table, symbol rate accuracy, transmitter power and encoder attack time, transmitter throughput delay, frequency deviation vs. time, power vs. time, transient frequency behavior, HCPM transmitter logical channel peak adjacent channel power ratio, HCPM transmitter logical channel off slot power, HCPM transmitter logical channel power envelope, HCPM transmitter logical channel time alignment, cross-correlated markers

Modulation fidelity, typical

 $C4FM \le 1.0\%$ HCPM $\le 0.5\%$

HDQPSK ≤ 0.25%

Input signal level is optimized for best modulation fidelity.

Bluetooth Measurements Application (SV27xx-SVPC and SV31xx-SVPC)

Supported standards

Measurements

Bluetooth® 4.2 Basic Rate, Bluetooth® 4.2 Low Energy, Bluetooth® 4.2 Enhanced Data Rate. Bluetooth® 5 when SV31 is enabled.

Peak Power, Average Power, Adjacent Channel Power or InBand Emission mask, -20 dB Bandwidth, Frequency Error, Modulation Characteristics including Δ F1avg (11110000), Δ F2avg (10101010), Δ F2 > 115 kHz, Δ F2/ Δ F1 ratio, frequency deviation vs. time with packet and octet level measurement information, Carrier Frequency f0, Frequency Offset (Preamble and Payload), Max Frequency Offset, Frequency Drift f₁-f₀, Max Drift Rate f_n-f₀ and f_n-f_{n-5}, Center Frequency Offset Table and Frequency Drift table, color-coded Symbol table, Packet header decoding information, eye diagram, constellation diagram

Output power (BR and LE),

typical mean

Supported measurements: Average power, peak power

Level uncertainty: refer to instrument amplitude and flatness specification

Measurement range: signal level > -70 dBm

Modulation characteristics,

typical mean

Supported measurements: ΔF₁avg, ΔF₂avg, ΔF₂avg/ ΔF₁avg, ΔF₂max%>=115kHz (basic rate), ΔF₂max%>=115kHz (low energy)

Deviation range: ±280 kHz

Deviation uncertainty (at 0 dBm):

<2 kHz ¹¹ + instrument frequency uncertainty (basic rate) <3 kHz 11 + instrument frequency uncertainty (low energy) Measurement range: Nominal channel frequency ±100 kHz

Initial Carrier Frequency Tolerance (ICFT) (BR and LE),

typical mean Carrier Frequency Drift (BR

and LE), typical mean

Measurement uncertainty (at 0 dBm): <1 kHz 12 + instrument frequency uncertainty

Measurement range: Nominal channel frequency ±100 kHz

Supported measurements: Max freq. offset, drift f₁- f₀, max drift fn-f₀, max drift fn-f_{n-5} (BR and LE 50 μs)

Measurement uncertainty: <1 kHz + instrument frequency uncertainty

Measurement range: Nominal channel frequency ±100 kHz

and LE)

In-band emissions (ACPR) (BR Level uncertainty: refer to instrument amplitude and flatness specification

General purpose digital modulation analysis (SVMxx-SVPC)

> **Modulation formats** BPSK, QPSK, 8PSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, π/2DBPSK, DQPSK, π/4DQPSK, D8PSK, D16PSK, SBPSK,

> > OQPSK, SOQPSK, 16-APSK, 32-APSK, MSK, GFSK, CPM, 2FSK, 4FSK, 8FSK, 16FSK, C4FM

Analysis period Up to 163,500 samples

Measurement filter Root Raised Cosine, Raised Cosine, Gaussian, Rectangular, IS-95 TX_MEA, IS-95 Base TXEQ_MEA, None

Reference Filter Gaussian, Raised Cosine, Rectangular, IS-95 REF, None

Filter rolloff factor α : 0.001 to 1, in 0.001 steps

Measurements Constellation, Demod I&Q vs. Time, Error Vector Magnitude (EVM) vs. Time, Eye Diagram, Frequency Deviation vs. Time,

Magnitude Error vs. Time, Phase Error vs. Time, Signal Quality, Symbol Table, Trellis Diagram

Maximum symbol rate 240 M symbols/s

Modulated signal must be contained entirely within the acquisition bandwidth

Linear, Decision-Directed, Feed-Forward (FIR) equalizer with coefficient adaptation and adjustable convergence rate. Supports Adaptive equalizer

modulation types BPSK, QPSK, QQPSK, DQPSK, π/2DBPSK, π/4DQPSK, 8PSK, D8SPK, D16PSK, 16/32/64/128/256-QAM,

16/32-APSK

QPSK Residual EVM (center frequency = 2 GHz), typical

mean

0.6 % (100 kHz symbol rate)

0.8 % (1 MHz symbol rate)

0.8 % (10 MHz symbol rate) 0.8 % (30 MHz symbol rate)

400 symbols measurement length, 20 Averages, normalization reference = maximum symbol magnitude

256 QAM Residual EVM (center frequency = 2 GHz), 0.6 % (10 MHz symbol rate)

typical mean

0.7 % (30 MHz symbol rate)

400 symbols measurement length, 20 Averages, normalization reference = maximum symbol magnitude

¹¹ At nominal power level of 0 dBm

¹² At nominal power level of 0 dBm

LTE Downlink RF measurements

(SV28xx-SVPC)

3GPP TS 36.141 Version 12.5 Standard Supported

Frame Format supported

FDD and TDD

Measurements and Displays Supported

Adjacent Channel Leakage Ratio (ACLR), Spectrum Emission Mask (SEM), Channel Power, Occupied Bandwidth, Power vs. Time showing Transmitter OFF power for TDD signals and LTE constellation diagram for Primary Synchronization Signal and

Secondary Synchronization Signal with Cell ID, Group ID, Sector ID, RS (Reference Signal) Power and Frequency Error.

ACLR with E-UTRA bands (typical, with noise correction)

1st Adjacent Channel 60 dB (RSA507A) 2nd Adjacent Channel 62 dB (RSA507A)

Mapping (MAPxx-SVPC)

Supported map types Pitney Bowes MapInfo (*.mif), Bitmap (*.bmp), Open Street Maps (.osm)

Saved measurement results

Measurement data files (exported results)

Map file used for the measurements

Google Earth KMZ file

Recallable results files (trace

and setup files)

MapInfo-compatible MIF/MID files

Pulse measurements (SVPxx-SVPC)

> Measurements (nominal) Pulse-Ogram™ waterfall display of multiple segmented captures, with amplitude vs time and spectrum of each pulse. Pulse

> > frequency, Delta Frequency, Average on power, Peak power, Average transmitted power, Pulse width, Rise time, Fall time, Repetition interval (seconds), Repetition interval (Hz), Duty factor (%), Duty factor (ratio), Ripple (dB), Ripple (%), Droop (dB), Droop (%), Overshoot (dB), Overshoot (%), Pulse- Ref Pulse frequency difference, Pulse- Ref Pulse phase difference, Pulse-Pulse frequency difference, Pulse- Pulse phase difference, RMS frequency error, Max frequency error, RMS phase error, Max

phase error, Frequency deviation, Phase deviation, Impulse response (dB), Impulse response (time), Time stamp.

Minimum pulse width for detection, typical

150 ns

Average ON power at 18 °C to

±0.4 dB + absolute amplitude accuracy

28 °C, typical

For pulses of 300 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

Duty factor, typical ±0.2% of reading

For pulses of 450 ns width or greater, duty cycles of .5 to .001, and S/N ratio \geq 30 dB

Average transmitted power,

typical

±0.5 dB + absolute amplitude accuracy

For pulses of 300 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

Peak pulse power, typical ±1.2 dB + absolute amplitude accuracy

For pulses of 300 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

Pulse width, typical ±0.25% of reading

For pulses of 450 ns width or greater, duty cycles of .5 to .001, and S/N ratio ≥ 30 dB

Playback of recorded signals

(SV56)

Playback file type R3F recorded by RSA306, RSA500, or RSA600

Recorded file bandwidth 40 MHz

General: Play, stop, exit playback File playback controls

Location: Begin/end points of playback settable from 0-100%

Skip: Defined skip size from 73 µs up to 99% of file size

Live rate: Plays back at 1:1 rate to recording time

Loop control: Play once, or loop continuously

Recording of signals requires storage with write rates of 300 MB/sec. Playback of recorded files at live rates requires storage with Memory requirement

read rates of 300 MB/sec.

WLAN Measurements, 802.11a/b/g/

j/p (SV23xx-SVPC)

Measurements WLAN power vs. time; WLAN symbol table; WLAN constellation; spectrum emission mask; error vector magnitude (EVM) vs.

> symbol (or time), vs subcarrier (or frequency); mag error vs symbol (or time), vs. subcarrier (or frequency); phase error vs symbol (or time), vs. subcarrier (or frequency); channel frequency response vs. symbol (or time), vs. subcarrier (or frequency); spectral

flatness vs. symbol (or time), vs. subcarrier (or frequency)

Residual EVM - 802.11a/g/j /p (OFDM), 64-QAM, typical

2.4 GHz. 20 MHz BW: -39 dB 5.8 GHz, 20 MHz BW: -38 dB

Input signal level optimized for best EVM, average of 20 bursts, ≥16 symbols each

Residual EVM - 802.11b, CCK-11, typical

2.4 GHz, 11 Mbps: 1.3 %

Input signal level optimized for best EVM, average of 1,000 chips, BT = .61

WLAN Measurements 802.11n (SV24xx-SVPC)

Measurements

WLAN power vs. time; WLAN symbol table; WLAN constellation; spectrum emission mask; error vector magnitude (EVM) vs. symbol (or time), vs subcarrier (or frequency); mag error vs symbol (or time), vs. subcarrier (or frequency); phase error vs symbol (or time), vs. subcarrier (or frequency); channel frequency response vs. symbol (or time), vs. subcarrier (or frequency); spectral

flatness vs. symbol (or time), vs. subcarrier (or frequency)

EVM performance - 802.11n,

64-QAM, typical

2.4 GHz, 40 MHz BW: -38 dB

5.8 GHz, 40 MHz BW: -38 dB

Input signal level optimized for best EVM, average of 20 bursts, ≥16 symbols each

WLAN Measurements 802.11ac

(SV25xx-SVPC)

Measurements WLAN power vs. time; WLAN symbol table; WLAN constellation; spectrum emission mask; error vector magnitude (EVM) vs.

symbol (or time), vs subcarrier (or frequency); mag error vs symbol (or time), vs. subcarrier (or frequency); phase error vs symbol (or time), vs. subcarrier (or frequency); channel frequency response vs. symbol (or time), vs. subcarrier (or frequency); spectral

flatness vs. symbol (or time), vs. subcarrier (or frequency)

EVM performance - 802.11ac,

256-QAM, typical

5.8 GHz, 40 MHz BW: -38 dB

Input signal level optimized for best EVM, average of 20 bursts, ≥16 symbols each

EMC pre-compliance and troubleshooting (EMCVUxx-SVPC)

> EN55011, EN55012, EN55013, EN55014, EN55015, EN55025, EN55032, EN60601, DEF STAN, FCC Part 15, FCC Part18, MIL-**Standards**

STD 461G

Features EMC-EMI display, Wizard to setup accessories and limit lines, Inspect, Harmonic Markers, Level Target, Compare Traces,

Measure Ambient, Report generation, Re-measure Spot

Detectors +Peak, Avg, Avg (of logs), Avg (VRMS), CISPR QuasiPeak, CISPR Peak, CISPR Average, CISPR Average of Logs, MIL +Peak,

DEF STAN Avg, DEF STAN Peak

Limit lines Up to 3 Limit Lines with corresponding margins

Resolution BW Set per standard or user definable **Dwell time** Set per standard or user definable

Report format PDF, HTML, MHT,RTF, XLSX, Image File format

Accessory type Antenna, Near Field Probe, Cable, Amplifier, Limiter, Attenuator, Filter, Other

Correction format Gain/Loss Constant, Gain/loss table, Antenna Factor

Save/recall up to 5 traces, Math trace (trace1 minus trace2), Ambient trace **Traces**

Return Loss, Distance-to-Fault, and Cable Loss measurements

> Measurements Return Loss, Cable Loss, Distance-to-Fault (DTF)

10 MHz to 3 GHz (RSA503A) Frequency range

10 MHz to 7.5 GHz (RSA507A/513A/518A)

Sweep speed 13 5 ms/point, Return Loss measurement

5 ms/point, Distance-to-Fault measurement

5 ms/point, Cable Loss measurement

500 Hz Frequency resolution

Return Loss measurement

error

Return Loss of 0 to 15 dB: ±0.5 dB

Return Loss of 15 to 25 dB: ±1.5 dB Return Loss of 25 to 35 dB: ±4.0 dB

Return Loss measurement

error at 14 dB Return Loss

±1.5 dB from 10 MHz to 6.8 GHz ±3.0 dB from 6.8 GHz to 7.5 GHz

Return Loss measurement

range

50 dB

Interference immunity Return Loss Measurement Error within specifications for the following conditions:

+5 dBm interferer power within 800 kHz of measurement point

+5 dBm interferer power more than 800 kHz away from measurement point

(High power test level. Interferer not included in accuracy assessment.)

Distance-to-Fault range 1500 m or 15 dB one-way cable loss capable, user defined

Maximum range is a function of the cable velocity factor and the frequency step size as follows:

Range =
$$\left(\frac{Vp \times c}{2}\right) \times \left(\frac{N-1}{F_{stop} - F_{start}}\right)$$

Where:

 V_p = Cable velocity factor relative to the speed of light

c = Speed of light (m/s)

F_{start} = Sweep start frequency (Hz) F_{stop} = Sweep stop frequency (Hz)

N = number of sweep points

Distance-to-Fault resolution RSA503A, (RG-58Vp=0.66): 0.03 m (User Definable)

RSA507A, (RG-58Vp=0.66): 0.01 m (User Definable)

Minimum resolution is a function of the cable velocity factor and the frequency step size as follows:

Resolution =
$$\left(\frac{Vp \times c}{2}\right) \times \left(\frac{1}{F_{stop} - F_{start}}\right)$$

or

Resolution = $\left(\frac{\text{Range}}{N-1}\right)$

²⁰¹ point sweep Measured using a Panasonic Toughpad FZ-G1, Intel® Core™ i5-5300U 2.3GHz Processor, 8GB RAM, 256GB SSD, Windows®7 Pro. Return Loss, Cable Loss, or Distance-to-Fault display is the only measurement on screen.

Input and output ports

Inputs, outputs, and inferfaces

RF input RSA503A/507A: N type, female

RSA513A/518A: N type, female (ships standard with this connector)

RSA513A/518A: Planar Crown, 50 Ω. Users can select this connector instead of the N type in order to select the connector that

best fits their applications. (Users can use adapters compatible with the planar crown that best fits their application.)

External frequency reference

input

BNC, female

Tracking Generator Source

Trigger/Sync input

Output

BNC, female N type, female

GPS Antenna SMA, female **USB Device Port** USB 3.0 - Type A

USB Status LED LED, dual color red/green

LED states:

Steady Red: USB power applied, or resetting Steady Green: Initialized, ready for use Blinking Green: Transferring data to host

Battery Status LED LED, green

LED states:

Blinking Green: External power connected, charging battery Off - no external power connected or battery fully charged

Installation requirements

Maximum power dissipation (fully loaded)

15 W maximum. Maximum line current is 0.2 A at 90 V line.

Surge current

2 A peak maximum, at 25 °C (77 °F) for ≤ 5 line cycles, after the product has been turned off for at least 30 seconds.

Cooling clearance

25.4 mm (1.0 in.)

Bottom, top

Sides

25.4 mm (1.0 in.) Rear: 25.4 mm (1.0 in.)

External DC input

18 V Voltage

Voltage range limits Operation: +12.0 V to +19.95 V

Battery Charging: +17.5 V to +19.95 V

2.5mm male Connector type

> Center conductor: positive Outer conductor: negative

AC Adapter Output $18 \text{ V} \pm 5\%$, 5 A (90 W max)

> Center conductor: positive Outer conductor: negative

Datasheet

Installation requirements

Battery

Nominal voltage 14.4 V Nominal capacity 6140 mAh

Battery technology Li-Ion, Smart Battery compatible with SMBus interface.

Battery operational life 4 hours of continuous operation per battery

Battery operating temperature Operating (discharge) ¹⁴: -10 °C to +45 °C (14 °F to 113 °F) ¹⁵ Charging: 0 °C to 45 °C (32 °F to 113 °F)

Battery storage life 2 years at +20 °C (68 °F) nominal Max storage duration between recharge: 10 months @ +20 °C (68 °F)

Physical characteristics

Physical characteristics

 Height
 67.3 mm (2.65 in)

 Width
 299.1 mm (11.78 in)

 Depth
 271.3 mm (10.68 in)

Net weight RSA503A/507A: 2.54 kg (5.6 pounds) without battery 2.99 kg (6.6 pounds) with battery

RSA513A/518A: 3.40 kg (7.5 pounds) without battery 3.85 kg (8.5 pounds) with battery

Environmental and safety

Temperature

Without battery installed Operating: -10 °C to +55 °C (+14 °F to +131 °F)

Non-operating: -51 °C to +71 °C (-60 °F to +160 °F)

With battery installed Operating (discharge) 14: -10 °C to +45 °C (+14 °F to +113 °F) 15

Charging: 0 °C to 45 °C (32 °F to +113 °F)

Humidity

Without battery Installed MIL-PRF-28800F Class 2

Operating:

5% to 95 \pm 5%RH (relative humidity) in the temperature range of +10 °C to 30 °C (+50 °F to 86 °F)

5% to $75\pm5\%$ RH above +30 °C to 40 °C (+86 °F to 104 °F) 5% to $45\pm5\%$ RH above +40 °C up to +55 °C (+86 °F to +131 °F)

<10 °C (+50 °F) humidity is uncontrolled; non-condensing

With battery Installed Operating:

5% to 95% RH (relative humidity) in the temperature range of +10 $^{\circ}$ C to 30 $^{\circ}$ C (+14 $^{\circ}$ F to +86 $^{\circ}$ F)

5% to 45% RH above +30 °C to 50 °C (+86 °F to 122 °F) <10 °C (+50 °F) humidity is uncontrolled; non-condensing

Altitude

 Operating
 Up to 5000 m (16,404 ft.)

 Non-operating
 Up to 15240 m (50,000 ft.)

¹⁴ Operation at -10 °C may require turning on the unit at room temperature first.

¹⁵ Varies per discharge current and heat dissipation characteristics; actual limit may be lower.

Environmental and safety

Exposure

Splash-Proof test, operating

and non-operating

No potential of shock hazard after exposure to non-operating Splash Proof Test per IEC529, level IP52

and non-operating

Dust resistance test, operating Test method per IEC529, level IP52, test conditions 13.4 and 13.5.

Salt exposure test, structural

parts

Standard MIL-STD-810, Method 509.1, Procedure 1

Dynamics

Vibration

Tektronix Class 2 Random Vibration Test at 2.66 GRMS: 5-500 Hz, 3 Axes at 10 min/axis Operating

MIL-PRF-28800F Class 2 Non-Operating

0.030 g²/Hz., 10 500 Hz, 30 minutes per axis, 3 axes (90 minutes total)

Shock

Test method per Military Standard MIL-PRF-28800F 1-4 Operating Non-Operating Exceeds the requirements of Military Standard MIL-PRF-28800F

Handling and transit

Bench handling, operating MIL-PRF-28800F Class 2 Transit drop, non-operating MIL-PRF-28800F Class 2

Free-Fall drop, non-operating 32 inches

Ordering information

Instrument models

RSA503A: USB real time spectrum analyzer, 9 kHz - 3.0 GHz, 40 MHz acquisition bandwidth **RSA507A**: USB real time spectrum analyzer, 9 kHz - 7.5 GHz, 40 MHz acquisition bandwidth

RSA513A: USB real time spectrum analyzer, 9 kHz - 13.6 GHz, 40 MHz acquisition bandwidth RSA518A: USB real time spectrum analyzer, 9 kHz - 18.0 GHz, 40 MHz acquisition bandwidth

The RSA500 series instruments require a PC with Windows 7, Windows 8/8.1, or Windows 10, 64-bit operating system and a USB 3.0 connection. 8 GB RAM and 20 GB free drive space is required for installation of SignalVu-PC. For full performance of the real time features of the RSA500, an Intel Core i7 4th generation processor is required. Processors of lower performance can be used, with reduced real-time performance. Storage of streaming data requires that the PC be equipped with a drive capable of streaming storage rates of 300 MB/sec.

Includes: USB 3.0 cable (2 M), A-A connection, screw lock, shoulder strap, carrying case (with room for unit, tablet, accessories), quick-start manual (printed), connector covers, WFM200BA Li-Ion rechargeable battery pack, WFM200BA Li-Ion battery pack instructions (printed), AC power adapter, power cord (see power plug options), USB memory device with SignalVu-PC, API and documentation files. A GPS antenna is not included with the instrument. See Accessories for available GPS antennas.

Instrument options

Option	Description
Option 04	Tracking generator: 10 MHz to 3 GHz (RSA503A) 10 MHz to 7.5 GHz (RSA507A, RSA513A, RSA518A)

Options

RSA500A power plug options

Opt. A0 North America power plug (115 V, 60 Hz) Opt. A1 Universal Euro power plug (220 V, 50 Hz) Opt. A2 United Kingdom power plug (240 V, 50 Hz) Opt. A3 Australia power plug (240 V, 50 Hz) Opt. A4 North America power plug (240 V, 50 Hz) Opt. A5 Switzerland power plug (220 V, 50 Hz) Opt. A6 Japan power plug (100 V, 50/60 Hz) Opt. A10 China power plug (50 Hz) Opt. A11 India power plug (50 Hz) Opt. A12 Brazil power plug (60 Hz) Opt. A99 No power cord

Language options for the RSA500

Opt. L1 English manual
Opt. L1 French manual
Opt. L2 Italian manual

Opt. L3	German manual
Opt. L4	Spanish manual
Opt. L5	Japanese manual
Opt. L6	Portuguese manual
Opt. L7	Simplified Chinese manual
Opt. L8	Traditional Chinese manual
Opt. L9	Korean manual
Opt. L10	Russian manual

RSA500A service options

Opt. C3	Calibration Service 3 Years
Opt. C5	Calibration Service 5 Years
Opt. D1	Calibration Data Report
Opt. D3	Calibration Data Report 3 Years (with Opt. C3)
Opt. D5	Calibration Data Report 5 Years (with Opt. C5)
Opt. R5	Repair Service 5 Years (including warranty)

Warranty

- RSA500 series warranty: 3 years.
- Alaris DF-A0047 antenna: 1-year warranty, provided by Alaris in South Africa. Service and calibration provided by Alaris.

Tablet

Tablets ordered separately The Panasonic FZ-G1 Toughpad tablet controller is recommended for use with the RSA500 series for portable field applications.

The Windows 10 version of the tablet is available for purchase from Panasonic at https://na.panasonic.com/us/computers-tablets-

handhelds/tablets/tablets/toughpad-fz-g1 and other third party Web sites.

Licenses

Licenses

A variety of optional, licensed applications are available for purchase for SignalVu-PC. These licenses can be associated with and stored on either your PC or any RSA300 series, RSA500 series, RSA600 series, and RSA7100A spectrum analyzers. Licenses can be purchased as an option to your hardware or separately as a Node-locked or a Floating license.

Contact your local Tektronix Account Manager to purchase a license. If your purchased license is not ordered as an option to your instrument, you will receive an email with a list of the applications purchased and the URL to the Tektronix Product License Web page, where you will create an account and can then manage your licenses using the Tektronix Asset Management System (AMS): http://www.tek.com/products/product-license.

AMS provides an inventory of the license(s) in your account. It enables you to check out or check in a license and view the history of licenses.

Optional applications are enabled by one of the following license types.

License type	Description
Node locked license (NL) purchased as an option to your instrument	This license i s initially assigned to a specific host id, which can be either a PC or an instrument. It can be reassociated to either a PC or another spectrum analyzer two times using Tek AMS. When associated with an instrument, this license is factory-installed on that instrument at the time of manufacture. It will be recognized by any PC operating with SignalVu-PC when the instrument is connected. However, the licensed application is deactivated from the PC if the licensed instrument is disconnected. This is the most common form of licensing, as it simplifies management of your applications.
Node locked license (NL) purchased separately	This license is initially assigned to a specific host id, which can be either a PC or an instrument. It can be reassociated to either a PC or instrument two times using Tek AMS. This license is delivered via email and is associated with either your PC or with an instrument when you install the license. This license should be purchased when you want your license to stay on your PC, or if you have an existing USB instrument on which you would like to install a license.
Floating license(FL) purchased separately	This license can be moved between different host ids, which can be either PCs or instruments. It can be reassociated to different PCs or instruments an unlimited number of times using Tek AMS. This license is delivered via email and is associated with either your PC or with an instrument when you install the license. This is the most flexible license and is recommended in applications where the license needs to be moved frequently.

SignalVu-PC application-specific modules

The following SignalVu-PC license options are available.

Application license	Description
SVANL-SVPC	AM/FM/PM/Direct Audio Analysis - Node Locked License
SVAFL-SVPC	AM/FM/PM/Direct Audio Analysis - Floating License
SVTNL-SVPC	Settling Time (frequency and phase) measurements - Node Locked License
SVTFL-SVPC	Settling Time (frequency and phase) measurements - Floating License
SVMNL-SVPC	General Purpose Modulation Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License
SVMFL-SVPC	General Purpose Modulation Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO- Floating License
SVPNL-SVPC	Pulse Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License
SVPFL-SVPC	Pulse Analysis to work with analyzer of acquisition bandwidth <= 40 MHz or MDO- Floating License
SVONL-SVPC	Flexible OFDM Analysis - Node Locked License
SVOFL-SVPC	Flexible OFDM Analysis - Floating License
SV23NL-SVPC	WLAN 802.11a/b/g/j/p measurement - Node Locked License
SV23FL-SVPC	WLAN 802.11a/b/g/j/p measurement - Floating License
SV24NL-SVPC	WLAN 802.11n measurement (requires SV23) - Node Locked License
SV24FL-SVPC	WLAN 802.11n measurement (requires SV23) - Floating License
SV25NL-SVPC	WLAN 802.11ac measurement to work with analyzer of acquisition bandwidth <= 40 MHz (requires SV23 and SV24) or MDO - Node Locked License
SV25FL-SVPC	WLAN 802.11ac measurement to work with analyzer of acquisition bandwidth <= 40 MHz (requires SV23 and SV24) or MDO - Floating License
SV26NL-SVPC	APCO P25 measurement - Node Locked License
SV26FL-SVPC	APCO P25 measurement - Floating License
SV27NL-SVPC	Bluetooth measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License
SV27FL-SVPC	Bluetooth measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO- Floating License

Application license	Description	
SV31NL-SVPC	Bluetooth 5 measurements (requires SV27) - Node Locked License	
SV31FL-SVPC	Bluetooth 5 measurements (requires SV27) - Floating License	
MAPNL-SVPC	Mapping - Node Locked License	
MAPFL-SVPC	Mapping - Floating License	
SV56NL-SVPC	Playback of recorded files - Node Locked License	
SV56FL-SVPC	Playback of recorded files - Floating License	
CONNL-SVPC	SignalVu-PC connection to the MDO4000B series mixed-domain oscilloscopes - Node Locked License	
CONFL-SVPC	SignalVu-PC connection to the MDO4000B series mixed-domain oscilloscopes - Floating License	
SV2CNL-SVPC	WLAN 802.11a/b/g/j/p/n/ac and live link to MDO4000B to work with analyzer of acquisition bandwidth <= 40 MHz - Node Locked License	
SV2CFL-SVPC	WLAN 802.11a/b/g/j/p/n/ac and live link to MDO4000B to work with analyzer of acquisition bandwidth <= 40 MHz - Floating License	
SV28NL-SVPC	LTE Downlink RF measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Node Locked License	
SV28FL-SVPC	LTE Downlink RF measurement to work with analyzer of acquisition bandwidth <= 40 MHz or MDO - Floating License	
SV54NL-SVPC	Signal survey and classification - Node Locked License	
SV54FL-SVPC	Signal survey and classification - Floating License	
SV60NL-SVPC	Return loss, distance to fault, VSWR, cable loss - Node Locked License (requires Option 04 on RSA500A/600A)	
SV60FL-SVPC	Return loss, distance to fault, VSWR, cable loss - Floating License (requires Option 04 on RSA500A/600A)	
SV30NL-SVPC	WiGig 802.11ad measurements - Node Locked License (only for offline analysis)	
SV30FL-SVPC	WiGig 802.11ad measurements - Floating License (only for offline analysis)	
EMCVUNL-SVPC	EMC pre-compliance and troubleshooting (includes EMI CISPR detectors) - Node Locked License	
EMCVUFL-SVPC	EMC pre-compliance and troubleshooting (includes EMI CISPR detectors) - Floating License	
SVQPNL-SVPC	EMI CISPR detectors - Node Locked License	
SVQPFL-SVPC	EMI CISPR detectors - Floating License	
EDUFL-SVPC	Education-only version of all modules for SignalVu-PC - Floating License	

Recommended accessories

Tektronix offers a wide variety of adapters, attenuators, cables, impedance converters, antennas and other accessories for the RSA500A series.

General purpose RF cables

012-1738-00	Cable,50 Ω , 40 inch,type-N(m) to type-N(M)
012-0482-00	Cable, 50 Ω , BNC (m) 3 foot (91 cm)
174-4977-00	Cable, 50 $\Omega,$ straight type-N (m) and angled type-N (m) connector, 1.6 foot (50 cm)
174-5002-00	Cable, 50 $\Omega,$ type-N (m) to type-N (m) connector, 3 foot (91 cm)
Adapters	
103-0045-00	Adapter, coaxial, 50 Ω type-N(m) to type-BNC(f)
013-0410-00	Adapter, coaxial, 50 Ω type-N (f) to type-N (f)
013-0411-00	Adapter, coaxial, 50 Ω type-N (m) to type-N (f)
013-0412-00	Adapter, coaxial, 50 $\Omega,$ type-N(m) to type-N(m)
013-0402-00	Adapter, coaxial, 50 Ω type-N (m) to type-N 7/16(m)
013-0404-00	Adapter, coaxial, 50 Ω type-N(m) to type-7/16 (f)

Datasheet

013-0403-00	Adapter, coaxial, 50 Ω type-N(m) to type DIN 9.5(m)
013-0405-00	Adapter, coaxial, 50 Ω type-N(m) to type-DIN 9.5(f)
013-0406-00	Adapter, coaxial, 50 Ω type-N(m) to type-SMA(f)
013-0407-00	Adapter, coaxial, 50 Ω type-N(m) to type-SMA(m)
013-0408-00	Adapter, coaxial, 50 Ω type-N(m) to type-TNC(f)
013-0409-00	Adapter, coaxial, 50 Ω type-N(m) to type-TNC(m)
Attenuators and 50/75 Ω pads	
013-0422-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-BNC(f) 75 Ω
013-0413-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-BNC(m) 75 Ω
013-0415-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-F(m) 75 Ω
015-0787-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-F(f) 75 Ω
015-0788-00	Pad, 50/75 $\Omega,$ minimum loss, type-N(m) 50 Ω to type-N(f) 75 Ω
011-0222-00	Attenuator, fixed, 10 dB, 2 W, DC-8 GHz, type-N(f) to type-N(f)
011-0223-00	Attenuator, fixed, 10 dB, 2 W, DC-8 GHz, type-N(m) to type-N(f)
011-0224-00	Attenuator, fixed, 10 dB, 2 W, DC-8 GHz, type-N(m) to type-N(m)
011-0228-00	Attenuator, fixed, 3 dB, 2 W, DC-18 GHz, type-N(m) to type-N(f)
011-0225-00	Attenuator, fixed, 40 dB, 100 W, DC-3 GHz, type-N(m) to type-N(f)
011-0226-00	Attenuator, fixed, 40 dB, 50 W, DC-8.5 GHz, type-N(m) to type-N(f)
Antennas	
119-8733-00	Antenna, Active. GPS & GLONASS, magnetic mount, 5M cable, 3V, 8ma SMA connector, RG-174 Cable
119-8734-00	Antenna, Active, GPS and Beidou, magnetic mount, 5M cable, 3V, 8ma SMA connector, RG-174 Cable
DF-A0047	Directional antenna, 20-8500 MHz, with electronic compass and preamp ¹⁶
DF-A0047-01	Frequency range extension for DF-A0047 directional antenna, 9 kHz-20 MHz $^{\rm 16}$
DF-A0047-C1	DF-A0047 antenna and DF-A0047-01 extension ¹⁶
016-2107-00	Transit case for DF-A0047 and DF-A0047-01 ¹⁶
119-6594-00	Yagi antenna, 825-896 MHz forward gain (over half-wave dipole): 10 dB
119-6595-00	Yagi antenna, 895-960 MHz forward gain (over half-wave dipole): 10 dB
119-6596-00	Yagi antenna, 1850-1990 MHz forward gain (over half-wave dipole): 9.3 dB
119-6597-00	Beam antenna, 1850 to 1990 MHz
119-6970-00	Magnetic mount antenna, 824 MHz to 2170 MHz (requires adapter 103-0449-00)
Filters, probes, demonstration board	1
119-7246-00	Pre-filter, general purpose, 824 MHz to 2500 MHz, type-N (f) connector
119-7426	Pre-filter, general purpose, 2400 MHz to 6200 MHz, type-N (f) connector
119-4146-00	EMCO E/H-field probes

¹⁶ Not available in China, Japan, New Zealand, Australia, Korea, Russia, Belarus, Kazakhstan

E/H field probes, lower cost

alternative

Available from Beehive http://beehive-electronics.com/

RSA-DKIT RSA Version 3 demo board with N-BNC adapter, case, antenna, instructions

011-0227-00 Bias-T, type N(m) RF, type N(f) RF+DC, BNC(f) Bias, 1 W, 0.5 A, 2.5 MHz-6 GHz

EMC accessories

EMI-DEBUG-HWPARTS Bundle of EMI accessories for debug (includes EMI-NF-Probe & EMI-NF-AMP)

EMI-RE-HWPARTS Bundle of EMI accessories for radiated pre-compliance test (includes: EMI-BICON-ANT, EMI-CLP-ANT, EMI-PREAMP, EMI-

TRIPOD, CABLE-5M, CABLE-1M)

EMI-BICON-ANT 25 MHz to 300 MHz Biconical antenna

EMI-CLP-ANT 300 MHz to 1 GHz Compact Log Periodic antenna

EMI-PREAMP 1 MHz to 1 GHz Preamplifier **EMI-TRIPOD** Antenna Tripod 0.8 to 1.5 m

EMI-LISN50uH-US 17 50uH AC line impedance stabilization network to test devices that use a US (United States) NEMA 5-15 power plug, 120V Max

EMI-LISN50uH-EU 17 50uH AC line impedance stabilization network to test devices that use an EU (European) Schuko CE7/4 power plug, 240V Max

EMI-LISN50uH-GB 17 50uH AC line impedance stabilization network to test devices that use a GB (Great Britian) BS1363 power plug, 240V Max

EMI-LISN5uH 5uH DC line impedance stabilization network

EMI-NF-PROBE Near Field Probe set

EMI-TRANS-LIMIT Transient Limiter 150 kHz to 30 MHz

CABLE-1M Cable, 1 m CABLE-3M Cable, 3 m **CABLE-5M** Cable, 5 m

EMI-NF-AMP Near Field Probe Amplifier

Chargers, Additional batteries,

Cables, Cases

RSA5600RACK Rackmount for RSA500 and RSA600 series. Holds 1 RSA500A or 2 RSA600A models.

WFM200BA Replacement battery pack for RSA500A series

WFM200BC External battery charger for WFM200BA, charges two batteries

CF-LNDDC120 Lind 120 W 12-32 Volt input vehicle adapter for RSA500A series and Panasonic Tough Pad (not available in China)

016-2109-01 Additional soft carry-case with shoulder strap

174-6810-00 Additional USB 3.0 cable (2 M), A-A connection, screw lock

¹⁷ Not available in Canada

Tracking generator accessories

A variety of calibration kits and phase-stabilized cables are available for the RSA500 tracking generator when used with the optional cable and antenna measurements software.

Calibration kits can be used to improve the factory calibration of the tracking generator when equipped with application SV60-Return loss, VSWR, cable loss, and distance to fault.

These phase-stabilized cables are high performance cables that are phase-stable to +- 2 degrees at 7.5 GHz, with return loss less than -20 dB. Velocity constant is 0.78. Loss at 7.5 GHz specified to be less than -1.05 dB (0.6 m), -1.61 dB (1.0 m), -2.30 dB (1.5m) (all values nominal).

-					
Ca	lihr	atio	٦n	ki	te

CALOSLNM Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, Type-N(m), 50 ohm **CALOSLNF** Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, Type-N(f), 50 ohm Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, 7/16 DIN(m) **CALOSLNF** CALOSL716F Calibration kit, 3-in-1, open, short, load, DC to 6 GHz, 7/16 DIN(f) CALSOLT35F Calibration kit, 4-in-1 3.5 mm (f) short, open, load, through, 13 GHz CALSOLT35M Calibration kit, 4-in-1 3.5 mm (m) short, open, load, through, 13 GHz **CALSOLTNF** Calibration kit, 4-in-1 type-N (f) short, open, load, through, 9 GHz **CALSOLTNM** Calibration kit, 4-in-1 type-N (m) short, open, load, through, 9 GHz CALSOLT716F Calibration kit, 4-in-1 7/16 (f) short, open, load, through, 6 GHz CALSOLT716M Calibration kit, 4-in-1 7/16 (m) short, open, load, through, 6 GHz

Phase-stabilized cables

012-1745-00	Type-N (m) to type-N (f), 5 ft or 1.5 m
012-1746-00	Type-N(m) to type-N(m), 5 ft or 1.5 m $$
012-1747-00	Type-N(m) to 7/16(f), 60 cm (23.6 in.)
012-1748-00	Type-N(m) to $7/16(f)$, 3.28 ft or 1 m
012-1749-00	Type-N(m) to $7/16(f)$, 5 ft or 1.5 m
012-1750-00	Type-N(m) to $7/16(m)$, 3.28 ft or 1 m
012-1751-00	Type-N(m) to $7/16(m)$, 5 ft or 1.5 m
012-1752-00	Type-N(m) to 7/16(m), 60 cm (23.6 in.)
012-1753-00	Type-N(m) to DIN 9.5(f), 60 cm (23.6 in.)
012-1754-00	Type-N(m) to DIN 9.5(f), 3.28 ft or 1 m $$
012-1755-00	Type-N(m) to DIN 9.5(f), 5 ft or 1.5 m $$
012-1756-00	Type-N(m) to DIN 9.5(m), 3.28 ft or 1 m $$
012-1757-00	Type-N(m) to DIN 9.5(m), 5 ft or 1.5 m
012-1758-00	Type-N(m) to DIN 9.5(m), 60 cm (23.6 in.)
012-1759-00	Type-N(m) to TNC(f), 3.28 ft or 1 m $$
012-1760-00	Type-N(m) to TNC(f), 5 ft or 1.5 m $$
012-1761-00	Type-N(m) to TNC(f), 60 cm (23.6 in.)
012-1762-00	Type-N(m) to TNC(m), 60 cm (23.6 in.)

012-1763-00	Type-N(m) to TNC(m), 3.28 ft or 1 m
012-1764-00	Type-N(m) to TNC(m), 5 ft or 1.5 m
012-1765-00	Type-N(m) to type-N(f), 60 cm (23.6 in.)
012-1766-00	Type-N(m) to type-N(f), 3.28 ft or 1 m
012-1767-00	Type-N(m) to type-N(m), 3.28 ft or 1 m
012-1768-00	Type-N(m) to type-N(m), 60 cm (23.6 in.)
012-1769-00	Type-N(m) to type-SMA(f), 60 cm (23.6 in.)
012-1770-00	Type-N(m) to type-SMA(f), 3.28 ft or 1 m
012-1771-00	Type-N(m) to type-SMA(f), 5 ft or 1.5 m
012-1772-00	Type-N(m) to type-SMA(m) 60 cm (23.6 in.)
012-1773-00	Type-N(m) to type-SMA(m), 3.28 ft or 1 m $$
012-1774-00	Type-N(m) to type-SMA(m), 5 ft or 1.5 m

(E

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

Product Area Assessed: The planning, design/development and manufacture of electronic Test and Measurement instruments.

ASEAN / Australasia (65) 6356 3900 Belgium 00800 2255 4835*
Central East Europe and the Baltics +41 52 675 3777
Finland +41 52 675 3777 Hong Kong 400 820 5835 Japan 81 (3) 6714 3086 Middle East, Asia, and North Africa +41 52 675 3777 People's Republic of China 400 820 5835 Republic of Korea +822 6917 5084, 822 6917 5080 Spain 00800 2255 4835* Taiwan 886 (2) 2656 6688

Austria 00800 2255 4835* Brazil +55 (11) 3759 7627 Central Europe & Greece +41 52 675 3777 France 00800 2255 4835* India 000 800 650 1835 Luxembourg +41 52 675 3777 The Netherlands 00800 2255 4835* Poland +41 52 675 3777 Russia & CIS +7 (495) 6647564 Sweden 00800 2255 4835* United Kingdom & Ireland 00800 2255 4835*

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Canada 1 800 833 9200 Denmark +45 80 88 1401 Germany 00800 2255 4835* Italy 00800 2255 4835* **Mexico, Central/South America & Caribbean** 52 (55) 56 04 50 90 **Norway** 800 16098 Portugal 80 08 12370 South Africa +41 52 675 3777

Switzerland 00800 2255 4835*

USA 1 800 833 9200

* European toll-free number. If not accessible, call: +41 52 675 3777

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tek.com.

Copyright Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

03 Aug 2018 37W-60380-12

www.tek.com

www.valuetronics.com